

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Spectra of Indazole

A. Bigotto^a; C. Zerbo^a

^a Department of Chemical Sciences, University of Trieste, Trieste, Italy

To cite this Article Bigotto, A. and Zerbo, C.(1990) 'Vibrational Spectra of Indazole', *Spectroscopy Letters*, 23: 1, 65 — 75

To link to this Article: DOI: 10.1080/00387019008054036

URL: <http://dx.doi.org/10.1080/00387019008054036>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL SPECTRA OF INDAZOLE

Key words: infrared, Raman, polarized spectra, indazole

A.Bigotto* and C.Zerbo

Department of Chemical Sciences, University of Trieste,
P.le Europa 1, 34127 Trieste, Italy

ABSTRACT

The i.r. spectra of indazole have been measured from 4000 to 180 cm^{-1} ; polarized spectra of single crystals have been also obtained. The Raman spectra of polycrystalline samples and solutions have been recorded and the polarization of many lines has been determined. Most vibrations have been assigned on the basis of the i.r. dichroism, Raman spectra and correlative arguments.

1. INTRODUCTION

The vibrational spectra of azoles have been the subject of several studies: on the contrary those of the corresponding benzazoles are by far less

investigated. In particular, the i.r. and Raman spectra of pyrazole have been thoroughly investigated and detailed assignments have been proposed ¹⁻⁶ whereas the data available for the corresponding benzo-derivative indazole are very scarce ⁷. In order to remove these deficiencies the investigation of the vibrational spectra of this molecule was undertaken. In this paper we report the polarized i.r. spectra of single crystals and the i.r. and Raman spectra of polycrystalline solids and solutions. A vibrational assignment is proposed on the basis of the i.r. dichroic measurements and of the polarization of the Raman bands.

EXPERIMENTAL

Indazole obtained from Fluka was used after repeated crystallisations. Single crystals were obtained by slow evaporation of methanol solutions. X-ray methods showed that the well developed plane of the crystals used in absorption measurements contained the a and b axes. The i.r spectra were recorded on a Perkin-Elmer 983G spectrophotometer. Polycrystalline samples were in the form of KBr pellets and Nujol mulls. Carbon tetrachloride was used to obtain i.r. spectra of solutions. Depolarization ratios were measured for methanol solutions. The measurements of the polarized spectra were carried out using a wire-grid polarizer and a beam-condenser. The Raman spectra

were obtained with a SPEX Ramalog spectrometer using the 514.5 nm line of a Spectra-Physics model 165 Ar⁺ laser for the excitation.

RESULTS AND DISCUSSION

Selection rules and spectral predictions

Crystals of indazole are monoclinic, space group P2₁ (C₂²), with two molecules in the unit cell ⁸. There are infinite chains of molecules connected by hydrogen bonds along the 2₁ axis. The deviation from the planarity of one of the N atoms, ascribed to the hydrogen bond, is small enough to allow the choice of a C_S symmetry for the discussion of the selection rules of the free molecule. With these assumptions, the selection rules for the indazole molecules and the crystal can be deduced from Table 1.

According to the above Table, each molecular fundamental should give two components in the crystal spectrum, active both in Raman and i.r., one being polarized along the b axis, the other in the ac plane. The A' and A" molecular fundamentals could be discriminated, to some extent, on the basis of the Raman polarization data of the solutions. Information concerning the assignments of the i.r. bands can also be obtained from the consideration of their dichroism. The oriented gas model may be used to predict the behaviour in polarized light. For the isolated

TABLE 1

Selection rules for the free molecule and the unit cell of Indazole

Molecule	Site	Unit cell
C_s	C_1	C_2
$A' 27$ (i.r.,R)		$A 44$ (5L)+ T_b (i.r.,R)
$A'' 12$ (i.r.,R)	$A 39$ (i.r.,R)	$B 43$ (4L)+ T_{ac} (i.r.,R)

L=Lattice modes

molecule, only the direction of the transition moments of the A'' vibrations is fixed by symmetry and using the atomic coordinates given by Escande and Lapasset⁸ the proportionality factors for the absorption intensities are

	a	b	$c^*(\perp ab)$
$I(A'')$	0.763	0.209	0.028

From these values it can be argued that, in the polarized i.r. spectra of the ab crystal plane, the A'' out-of-plane modes should give the strongest component when the electric vector of the light is perpendicular to the b crystal axis. Bands showing a strong component parallel to the b axis or components of nearly equal

intensity in both polarizations can be confidently assigned to in-plane modes.

Vibrational assignments

The relevant i.r. and Raman data are collected in Table 2 together with the assignments.

The hydrogen bonding strongly affects the position and shape of the bands associated to the NH stretching mode. This fundamental is observed as a sharp i.r band at 3453 cm^{-1} for the free molecule in CCl_4 solutions: in the solid state it appears as a strong, broad absorption with maximum at 3181 cm^{-1} , which moves to 2370 cm^{-1} upon deuteration and undergoes a red shift of 10 cm^{-1} on cooling to -140°C . The band is highly structured, in particular on the low frequency side, with several submaxima corresponding to combinations and overtones gainig intensity through Fermi resonance with the NH stretching fundamental. This fact makes difficult an unambiguous assignment of the CH stretching modes in the i.r. spectra. The assignment is easier for the Raman spectra where the intensity of the NH stretching band is very low. Keeping in mind the assignments of pyrazole¹⁻⁶, the polarized Raman band at 3104 cm^{-1} can be assigned to the stretching fundamental of the CH of the pyrazole ring. The corresponding fundamentals for the benzene ring can be assigned to the Raman bands at 3088, 3070, 3041 and 3031 cm^{-1} .

TABLE 2

Experimental spectral data and assignments for indazole

i.r. frequencies and polarization	Raman shift and polarization	Assignment
3181 s	$\parallel >^\perp$	3178 vw,br A' ν NH
3158 s	$\parallel >^\perp$	A'
3120 m	$\parallel >^\perp$	A'
3106 m	$\parallel >^\perp$	3104 m (p) A' ν CH (Pyrazole)
3087 m	$\parallel >^\perp$	3088 mw A' ν CH (Φ)
		3070 ms (p)
3071 m	$\parallel >^\perp$	{ 3067 ms A' ν CH (Φ)
3053 m	$\parallel >^\perp$	A'
3040 m	$\parallel >^\perp$	3041 w A' ν CH (Φ) 3031 w A' ν CH (Φ)
1622 m	$\parallel >^\perp$	1623 w (p) A' ν skeletal
1585 w	$\parallel >^\perp$	1584 w (dp?) A' ν skeletal
1509 ms	$\parallel >^\perp$	1504 w A' ν skeletal
1486 m	$\parallel >^\perp$	1488 m (p) A' ν skeletal
1444 m	$\parallel >^\perp$	1443 m A' ν skeletal
1409 w	$\parallel >^\perp$	A'
1390 sh		
{ 1382 m	$\parallel >^\perp$	1389 m (p) A' ν skeletal
1357 s	$\parallel =^\perp$	1359 m (p) A' ν skeletal
1315 w	$\parallel > \parallel$	1315 w (p) A' ν skeletal
1305 w	$\parallel >^\perp$	A'
1285 m	$\parallel >^\perp$	1284 w (p) A' ν skeletal, δ CH
1249 m	$\parallel >^\perp$	1248 w (dp) A' δ CH, ν skeletal
1205 m	$\parallel >^\perp$	1203 w (p) A' δ CH
1171 w	$\parallel >^\perp$	A'
1150 mw	\perp	
{ 1144 mw	\parallel	1144 vw A'
1123 m	$\parallel >^\perp$	1122 w (p) A' δ CH
1076 ms	$\parallel > \parallel$	1077 ms (p) A' δ CH
1020 w	$\parallel >^\perp$	1021 w A' δ CH
1004 s	$\parallel =^\perp$	1002 m (p) A' δ skeletal
971 *	\perp	(A'') τ CH
951 s	\parallel	A' δ skeletal
941 ms	\perp	933 m A'' τ CH
894 mw	$\parallel >^\perp$	892 w (p) A' δ skeletal
870 mw	$\perp > \parallel$	A'' τ CH

TABLE 2 (cont.)

i.r. frequencies and polarization	Raman shift and polarization	Assignment
860 sh $\perp \rightarrow \parallel$	859 w	A"
848 s $\perp \rightarrow \parallel$	846 w	A" τ CH
805 w \perp		
785 m,br \perp ** }		A" τ NH
768 ms $\parallel \perp$	769 vs(p)	A' δ skeletal
746 vs $\perp \rightarrow \parallel$	751 vw	A" τ CH
656 w $\perp \rightarrow \parallel$		
616 m $\parallel \perp$	616 m (dp?)	A' δ skeletal
563 w $\perp \rightarrow \parallel$	559 w	A" τ skeletal
540 vw $\parallel \perp$	541 m (p)	A' δ skeletal
510 vw $\parallel \perp$		
470 vw $\perp \rightarrow \parallel$		A" τ skeletal
436 m		
{ 430 m $\perp \rightarrow \parallel$	427 vw	A" τ skeletal
405 w		
{ 400 w $\perp \rightarrow \parallel$	402 w (dp)	A" τ skeletal
275 w $\perp \rightarrow \parallel$		A" τ skeletal
240 vw	238 w	
225 vw	223 vw(dp?)	A" τ skeletal
	140 ms	lattice
	126 ms	lattice
	117 s	lattice
	102 vs	lattice
	87 m	lattice
	63 w	lattice
	42 vs	lattice

* Observed only in the single crystal spectrum

** Evans hole

\parallel Bands polarized parallel to the **b** crystal axis

\perp Bands polarized parallel to the **a** crystal axis

s=strong, m=medium, w=weak; p=polarized, dp=depolarized
 Φ =Phenyl; ν =stretching, δ =in-plane bending, τ =out-of-plane bending

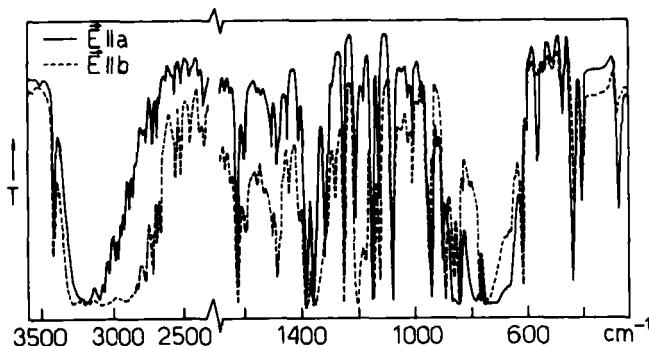


Fig. 1. Polarized i.r. spectrum of indazole, ab crystal plane

Downloaded At: 04:01 30 January 2011

Fourteen A' fundamentals can be easily assigned to the Raman bands at 1623, 1488, 1389, 1359, 1315, 1284, 1203, 1122, 1077, 1002, 949, 892, 769 and 541 cm^{-1} which are polarized in solution. The Raman lines at 1584, 1248 and 616 cm^{-1} , although depolarized, are also assigned to A' fundamentals on the basis of the behaviour of the corresponding i.r. bands with polarized light: in fact, they give either a prevailing component strongly polarized along the b axis, or two components with comparable intensity in both polarizations.

The available data don't allow an unambiguous attribution of the in-plane NH bending mode. Deuteriation does affect the position and intensity of several bands between 1500 and 1100 cm^{-1} , thus indicating a partial NH bending character for some of the fundamentals in this range. Moreover, the

appearance of a rather broad band at 1031 cm^{-1} in the i.r. spectrum of the N-deuterated compound suggest the assignment of the in-plane ND bending vibration to this frequency.

Concerning the out-of-plane fundamentals, the τNH mode is assigned to the broad absorption between 820 and 640 cm^{-1} which disappears upon deuteration giving a new band at 525 cm^{-1} . The dichroism parallel to the a axis is consistent with this attribution, which is also supported by the observation that the absorption shape, particularly in the region $820-750\text{ cm}^{-1}$, is strongly affected by cooling to liquid-nitrogen temperature. A τCH fundamental is also located in this range on the basis of the prevailing polarization parallel to the a axis shown by the i.r. band at 747 cm^{-1} . The analysis of the shape of the absorption bands in this range shows that a resonance interaction does occur between the broad τNH and a combination tone. In fact, a transmission hole (Evans hole⁹) appears at $\approx 770\text{ cm}^{-1}$, where a combination between the A' fundamental at 540 cm^{-1} and the fundamental of A'' species at 225 cm^{-1} should occur. Moreover, the observation of a small, but significant, shift ($+6\text{ cm}^{-1}$) of the τCH band at 747 cm^{-1} upon deuteration, suggests that also this mode does participate to this interaction through a three-level Fermi resonance mechanism.

Two ν_{CH} vibrations can be assigned to the i.r. bands at 941 and 870 cm^{-1} which are clearly polarized along the a crystal axis. Correlative arguments based on the assignments for α -disubstituted benzenes¹⁰ suggest that the remaining two ν_{CH} fundamentals should be located near 970 and 850 cm^{-1} , but no obvious candidates are found in these regions. The choice of the very weak band at 971 cm^{-1} , which is observed only in the single crystal spectra, and the strong band at 848 cm^{-1} which shows a prevailing polarization along the a axis, but also a noticeable component polarized along the b axis, should be considered as tentative.

Three of the remaining A" fundamentals may be assigned to the i.r. bands at 563, 470 and 405 cm^{-1} which are clearly polarized along the a axis. The assignment of the band at 405 cm^{-1} is also supported by the depolarized character of its Raman counterpart. The choice of the bands at 270 and 225 cm^{-1} is mainly suggested by correlative arguments based on the assignments of indole¹¹⁻¹³ and, for the latter mode, by the observation of a weak, likely depolarized Raman line at 223 cm^{-1} .

ACKNOWLEDGEMENTS

The authors wish to thank Prof. G.Nardin for the aid in orienting single crystals by X-ray methods. This

work was supported by a research grant of Ministero della Pubblica Istruzione of Italy.

REFERENCES

1. V. Tabacik and S. Sportouch, *J. Raman Spectrosc.* 7, 61 (1978)
2. V. Tabacik, V. Pellegrin and H.H. Günthard, *Spectrochim. Acta* 35A, 1055 (1979)
3. A. Zecchina, L. Cerruti, S. Coluccia and E. Borello, *J. Chem. Soc. (B)* 1363 (1967)
4. V.S. Troitskaya, N.D. Konevskaya, V.G. Vinokurov and V.I. Tyulin, *Khim. Geterotsikl. Soedin.* 542 (1974)
5. V.S. Troitskaya, Yu.D. Timoshenkova, Yu.A. Pentin and V.I. Tyulin, *Khim. Geterotsikl. Soedin.* 1388 (1974)
6. V.S. Troitskaya, Yu.D. Timoshenkova, V.G. Vinokurov and V.I. Tyulin, *Vestn. Mosk. Univ. Khim.* 15, 677 (1974)
7. K.W.F. Kohlrausch and R. Seka, *Ber.* 73, 162 (1940)
8. P.A. Escande and J. Lapasset, *Acta Cryst.* B30, 2009 (1974)
9. J.C. Evans, *Spectrochim. Acta* 16, 984 (1960)
10. G. Varsány, in "Vibrational Spectra of Benzene Derivatives", Academic Press, New York, 1969, pp. 339-341
11. H. Takeuchi and I. Harada, *Spectrochim. Acta* 42A, 1069 (1986)
12. A. Suwaiyan and R. Zwarich, *Spectrochim. Acta* 42A, 1017 (1986)
13. A. Lautié, M.F. Lautié, A. Gruger and S.A. Fakhri, *Spectrochim. Acta* 36A, 85 (1980)

Date Received: 08/28/89
Date Accepted: 09/26/89